

RAPPORT DE SIMULATION DE L'EXPOSITION

Selon les lignes directrices nationales ANFR du 7 Novembre 2019 Dossier, prévu par l'article 2 de la loi 2015-136 du 9 février 2015, visant à informer de l'exposition aux ondes émises par des installations radioélectriques

Référence du rapport de simulation : T51889-1-01/04/2024

Commune: RENNES

Adresse de l'installation : 26 BOULEVARD OSCAR LEROUX 35000 RENNES

Validation: Département Central Ingénierie 01/04/2024

Ce document comporte 17 pages

TABLE DES MATIERES

1.	Synthèse	
	571101656	
2.	Description du projet	5
3.	Plan de situation	5
4.	Caractéristiques de l'installation	7
	Résultats de simulation	
á	a) Antennes à faisceaux fixes	10
	i. Représentation du niveau de champ simulé à 1,5 m par rapport au sol	10
	ii. Simulation à différentes hauteurs	11
k	o) Antennes à faisceaux orientables	14
	iii. Représentation du niveau de champ simulé à 1,5 m par rapport au sol	14
	iv. Simulation à différentes hauteurs	15

REVISIONS

Indice	Date	Nature des révisions

Objet du rapport

L'objet du document est de présenter les résultats de la simulation en intérieur de l'exposition aux ondes émises par le projet d'installation radioélectrique située 26 BOULEVARD OSCAR LEROUX 35000 RENNES diffusant les technologies dont le détail est explicité dans le chapitre 4 selon les lignes directrices nationales15 publiées le 23 décembre 2015 par l'Agence nationale des fréquences et mises à jour en octobre 2019 pour la prise en compte des antennes actives à faisceaux orientables utilisées notamment en technologie 5G.

Ce rapport est sous la responsabilité de l'exploitant de l'installation radioélectrique et ne vaut que pour l'installation spécifiée de Bouygues telecom.

Ce rapport est destiné à être remis au maire ou au président de l'intercommunalité à sa demande conformément au décret n° 2016-1211 du 9 septembre 2016 relatif à l'information locale en matière d'exposition du public aux champs électromagnétiques et au comité national de dialogue de l'Agence nationale des fréquences. Il ne contient aucune donnée personnelle et respecte les droits au respect de la vie privée et à l'image.

Une simulation ne peut pas remplacer la mesure du niveau réel d'exposition une fois l'installation en service. Seule une mesure réalisée conformément au protocole de mesure in situ ANFR/DR15¹ en vigueur par un laboratoire accrédité par le Comité français d'accréditation (COFRAC) permet de déterminer le niveau d'exposition réel et de vérifier le respect des valeurs limites d'exposition.

-

¹ Ce protocole de mesures a été publié au Journal Officiel de la République française, n°0271 du 21 novembre 2017 texte n°21, Arrêté du 9 novembre 2017 modifiant l'arrêté du 3 novembre 2003 relatif au protocole de mesure in situ visant à vérifier pour les stations émettrices fixes le respect des limitations, en termes de niveaux de référence, de l'exposition du public aux champs électromagnétiques prévu par le décret n° 2002-775 du 3 mai 2002, JORF n°0271 du 21 novembre 2017.

1. Synthèse

Résultats de simulation des antennes à faisceaux fixes

L'exposition maximale simulée pour le projet d'implantation de l'installation située 26 BOULEVARD OSCAR LEROUX 35000 RENNES est comprise pour les azimuts suivants :

	Azimut 320°	Azimut 50°	Azimut 140°
Niveau Maximal	entre 0 et 1 V/m	entre 0 et 1 V/m	entre 0 et 1 V/m
Hauteur	31.5 m	31.5 m	13.5 m

Le niveau maximal simulé à une hauteur de 1,50 m par rapport au sol est compris entre 0 et 1 V/m

Résultats de simulation des antennes à faisceaux orientables

L'exposition maximale simulée pour le projet d'implantation de l'installation située 26 BOULEVARD OSCAR LEROUX 35000 RENNES est comprise pour les azimuts suivants :

	Azimut 320°	Azimut 50°	Azimut 140°			
Niveau Maximal	entre 1 et 2 V/m	entre 1 et 2 V/m	entre 0 et 1 V/m			
Hauteur	31.5 m	31.5 m	13.5 m			
Le niveau maximal simulé à une hauteur de 1,50 m par rapport au sol est compris entre 0 et 1						
V/m						

L'appréciation de l'exposition ne saurait s'appuyer sur la somme arithmétique des expositions issues des prédictions de calcul présentées dans ce dossier. La mesure de l'exposition reste la seule approche pertinente pour apprécier la réalité de l'exposition globale des expositions radiofréquences (FM, Télévision, Téléphonie mobile etc..).

2. Description du projet

Le projet déploie les fréquences suivantes 3G (900), 4G (700, 800, 1800, 2100, 2600), 5G (2100, 3500).

Description de l'installation						
Coordonnées géographiques de la station (Lambert II étendu)	Latitude : 2351137 Longitude : 301932					
Altitude de la station	41 m					
Hauteur du support	64.99 m					
Adresse	26 BOULEVARD OSCAR LEROUX 35000 RENNES					
Nombre d'antennes	6					
Туре	Directive					
Systèmes	3G/4G/5G					
Antenne à faisceaux fixes/orientables	Fixe / Orientable					
Azimuts (en degrés)	320°/50°/140°					
Bandes de fréquences déployées (en MHz)	3G (900), 4G (700, 800, 1800, 2100, 2600), 5G (2100, 3500)					

3. Plan de situation

Les antennes et les azimuts (rayon principal) pour les antennes Directives sont précisément localisés sur la carte.

Afin de faciliter l'analyse de la zone étudiée, la zone géographique (de rayon 100 m en zone urbaine) représentée est centrée sur l'installation radioélectrique de l'exploitant.

Les établissements particuliers sont localisés par un pictogramme en indiquant le nom (quand l'information est disponible) et le type (crèche, établissements de l'enseignement primaire ou secondaire, établissement de soins...).

L'axe de rayonnement principal dans le plan horizontal des antennes à faisceaux fixes est représenté par une flèche.

Plan de situation

[Source fond de carte : Bing Maps]

4. Caractéristiques de l'installation

	Description de l'installation							
Azimut 1	320°							
Hauteur milieu de l'antenne	63.5 m					64m		
Systèmes	3G	4G	4G	4G	4G	4G	5G	5G
Bande de fréquence (MHz)	900	700	800	1800	2100	2600	2100	3500
Puissance maximale en entrée d'antenne (W)	34.5	69	69	162	64.5	63	32	240
Gain d'antenne max en dbi	16	15	16	16.5	17	18.5	17	24.5
Angles d'inclinaison (°)	6°	6°	6°	6°	6°	6°	6°	0°
Azimut 2	50°							
Hauteur milieu de l'antenne	63.5 m					64m		
Systèmes	3G	4G	4G	4G	4G	4G	5G	5G
Bande de fréquence (MHz)	900	700	800	1800	2100	2600	2100	3500
Puissance maximale en entrée d'antenne (W)	34.5	69	69	162	64.5	63	32	240
Gain d'antenne max en dbi	16	15	16	16.5	17	18.5	17	24.5
Angles d'inclinaison (°)	6°	6°	6°	6°	6°	6°	6°	0°
Azimut 3	140°							
Hauteur milieu de l'antenne	63.5 m				64m			
Systèmes	3G	4G	4G	4G	4G	4G	5G	5G
Bande de fréquence (MHz)	900	700	800	1800	2100	2600	2100	3500
Puissance maximale en entrée d'antenne (W)	34.5	69	69	162	64.5	63	32	240
Gain d'antenne max en dbi	16	15	16	16.5	17	18.5	17	24.5
Angles d'inclinaison (°)	6°	6°	6°	6°	6°	6°	6°	0°

5. Résultats de simulation

La simulation est réalisée pour différentes hauteurs en prenant en compte des effets dus au bâti (réflexion, réfraction, angle d'incidence de l'onde). Les valeurs présentées correspondent au niveau cumulé de l'exposition en intérieur par typologie d'antenne et exprimées en volts par mètre. Conformément aux lignes directrices de l'ANFr, une distinction est faite entre la présentation des résultats de simulation des antennes à faisceaux fixes et des antennes à faisceaux orientables.

Les antennes à faisceaux fixes produisent une exposition uniforme dans l'axe de ces dernières et relativement constante dans le temps au gré des usages des clients connectés sur la station émettrice.

Les antennes à faisceaux orientables produisent pour leur part une exposition localisée et d'autant plus réduite que le temps d'exposition est conditionné par la vitesse de communication et la présence ou non de terminaux 5G en communication dans la direction du ou des faisceaux dynamiques générés par les antennes. Il est à noter qu'en l'absence de trafic en un point donné l'exposition 5G est très réduite (inférieure à 0.5 V/m) comme l'ont démontrées les mesures réalisées par l'ANFr dans le cadre des expérimentions 5G menées par les différents opérateurs.

Le calcul de l'exposition induite par l'installation située 26 BOULEVARD OSCAR LEROUX 35000 RENNES est pondérée par :

- Un facteur de réduction appliqué au niveau calculé à puissance maximale des émetteurs de téléphonie mobile pour les antennes à faisceaux fixes. Cette valeur correspond au facteur médian observé sur les mesures réalisées en 2015 entre la valeur cumulée extrapolée et la somme des contributions de la téléphonie mobile issues du cas B du protocole de mesure in-situ en vigueur, quand la téléphonie mobile domine pour les antennes à faisceaux fixes
- Un facteur de réduction sur 6 minutes au niveau calculé à puissance maximale des émetteurs de téléphonie mobile pour des antennes à faisceaux orientables. Ce facteur de réduction correspondant à un balayage du faisceau pendant 4,4 % du temps dans une direction donnée.
- Un facteur d'atténuation de duplexage temporel TDD pour les fréquences [3,4 3,8
 GHz] de cette installation.
- Un abaissement correspondant à l'atténuation forfaitaire produite par un simple vitrage d'une onde perpendiculaire à ce dernier complété d'un facteur de réduction propre à l'angle d'incidence des ondes électromagnétiques émises par la station radioélectrique.
- Un abaissement forfaitaire propre aux caractéristiques électromagnétiques des toits.

A priori, dans cette configuration, les niveaux calculés sont des majorants de l'exposition simulée en intérieur. Les simulations sont réalisées en zone urbaine avec la résolution suivante : 2 m.

Les couleurs affichées sur les cartes suivent le code couleur suivant :

Niveau	Couleur
Strictement supérieur à 6 V/m :	
Entre 5 et 6 V/m :	
Entre 4 et 5 V/m :	
Entre 3 et 4 V/m :	
Entre 2 et 3 V/m :	
Entre 1 et 2 V/m :	
Entre 0 et 1 V/m :	

a) Antennes à faisceaux fixes

i. Représentation du niveau de champ simulé à 1,5 m par rapport au sol La simulation à 1,5 m par rapport au sol a été réalisée à partir du modèle numérique de terrain de DTM SIRADEL de 2019 interpolé au pas de 2 m .

À 1,5 m du sol, le niveau maximal simulé est compris entre 0 et 1 V/m

Légende

>6V/m

Entre 5 et 6 V/m :

Entre 4 et 5 V/m :

Entre 2 et 3 V/m :

Entre 1 et 2 V/m :

Entre 0 et 1 V/m :

ii. Simulation à différentes hauteurs

Les antennes projetées sont Directives.

Une modélisation est réalisée par antenne à faisceau fixe. Pour chacune, l'environnement est différent, l'exposition maximale calculée ainsi que la hauteur correspondante varient d'une antenne à l'autre. Ce projet comporte 3 antennes à faisceau fixe, 3 simulations ont été réalisées.

La simulation à 1,5 m par rapport au sol a été réalisée à partir du modèle numérique de terrain de DTM SIRADEL de 2019 interpolé au pas de 2 m.

a. Azimut 50°

Pour les antennes à faisceau fixe orientées dans l'azimut 50°, le niveau maximal calculé est compris entre 0 et 1 V/m . La hauteur correspondante est de 31.5 m .

b. Azimut 140°

Pour les antennes à faisceau fixe orientées dans l'azimut 140° , le niveau maximal calculé est compris entre 0 et 1 V/m. La hauteur correspondante est de 13.5 m.

c. Azimut 320°

Pour les antennes à faisceau fixe orientées dans l'azimut 320°, le niveau maximal calculé est compris entre 0 et 1 V/m. La hauteur correspondante est de 31.5 m.

b) Antennes à faisceaux orientables

iii. Représentation du niveau de champ simulé à 1,5 m par rapport au sol La simulation à 1,5 m par rapport au sol a été réalisée à partir du modèle numérique de terrain de DTM SIRADEL de 2019 interpolé au pas de 2 m .

À 1,5 m du sol, le niveau maximal simulé est compris entre 0 et 1 V/m

Légende
>6V/m
Entre 5 et 6 V/m :
Entre 4 et 5 V/m :
Entre 3 et 4 V/m :
Entre 2 et 3 V/m :

Entre 1 et 2 V/m : Entre 0 et 1 V/m :

iv. Simulation à différentes hauteurs

Les antennes projetées sont Directives.

Une modélisation est réalisée par antenne à faisceaux orientables. Pour chacune, l'environnement est différent, l'exposition maximale calculée ainsi que la hauteur correspondante varient d'une antenne à l'autre. Ce projet comporte 3 antennes à faisceaux orientables, 3 simulations ont été réalisées.

La simulation à 1,5 m par rapport au sol a été réalisée à partir du modèle numérique de terrain de DTM SIRADEL de 2019 interpolé au pas de 2 m .

a. Azimut 50°

Pour les antennes à faisceau orientable dans l'azimut 50° , le niveau maximal calculé est compris entre 1 et 2 V/m. La hauteur correspondante est de 31.5 m.

b. Azimut 140°

Pour les antennes à faisceau orientable dans l'azimut 140° , le niveau maximal calculé est compris entre 0 et 1 V/m. La hauteur correspondante est de 13.5 m.

c. Azimut 320°

Pour les antennes à faisceau orientable dans l'azimut 320°, le niveau maximal calculé est compris entre 1 et 2 V/m . La hauteur correspondante est de 31.5 m .

